Robotics & Control Systems

Build intelligent machines with integrated hardware/software.

3 items in this topic

Projects

JetBot: Low-Cost Open-Source 2-Wheel Robot by NVIDIA

<p>A comprehensive guide for building and programming your NVIDIA Jetson-powered robot.</p><h2>Project Overview</h2><p><br>This project uses the NVIDIA Jetson platform to create an intelligent robot capable of autonomous navigation, object detection, and collision avoidance. It combines edge AI processing with robotics hardware for implementing AI-powered robotics applications at the edge.</p><h2>Hardware Components</h2><p></p><ul><li><p><strong>Computing Platform</strong>: NVIDIA Jetson Nano 4GB/2GB (Developer Kit Version)</p></li><li><p><strong>Chassis</strong>: Waveshare JetBot AI Kit chassis with 3D-printed components</p></li><li><p><strong>Motors</strong>: 2x TT Gear Motors with 6:1 gear ratio</p></li><li><p><strong>Power System</strong>:</p><ul><li><p>18650 Lithium Battery Pack (7.4V)</p></li><li><p>Waveshare Motor Driver Hat (4tronix)</p></li></ul></li><li><p><strong>Sensors</strong>:</p><ul><li><p>Camera: Raspberry Pi V2 Camera (8MP) or IMX219-77 camera module</p></li><li><p>Distance sensors: VL53L0X Time-of-Flight sensor</p></li><li><p>IMU: Optional MPU9250 9-DOF sensor</p></li></ul></li><li><p><strong>Additional Components</strong>:</p><ul><li><p>WS2812 RGB LED array</p></li><li><p>OLED display (optional)</p></li></ul></li></ul><h2>Assembly Instructions</h2><p></p><p><strong>Step 1: Jetson Setup</strong></p><ol><li><p>Flash JetPack 4.6+ to microSD card using NVIDIA SDK Manager</p></li><li><p>Complete initial Ubuntu configuration</p></li><li><p>Install JetBot software:</p><p></p></li></ol><pre><code>git clone https://github.com/NVIDIA-AI-IOT/jetbot cd jetbot sudo python3 setup.py install</code></pre><p><strong>Step 2: Hardware Assembly</strong></p><ol><li><p>Mount Jetson Nano to chassis baseplate</p></li><li><p>Connect motors to motor controller using PH2.0 connectors</p></li><li><p>Install camera module using CSI-2 ribbon cable</p></li><li><p>Connect battery to power distribution board</p></li></ol><p><strong>Step 3: Software Configuration</strong></p><ol><li><p>Configure camera interface:</p></li></ol><pre><code>from jetbot import Camera camera = Camera.instance(width=300, height=300)</code></pre><ol start="2"><li><p>Initialize motor controller:</p></li></ol><pre><code>from jetbot import Robot robot = Robot()</code></pre><h2><strong>AI Model Implementation</strong></h2><p><strong>Used Models</strong></p><ul><li><p>Collision avoidance: ResNet18 trained on synthetic dataset</p></li><li><p>Road following: Dronet-style CNN with regression output</p></li></ul><p><strong>Training Process</strong></p><ol><li><p>Collect dataset using Jupyter notebook interface</p></li><li><p>Transfer learning using PyTorch</p></li><li><p>Training workflow:</p><p></p></li></ol><pre><code>model = models.resnet18(pretrained=True) model.fc = nn.Linear(512, 2)</code></pre><p><strong>Deployment</strong></p><ol><li><p>Convert model to TensorRT format</p></li><li><p>Optimize for Jetson using:</p></li></ol><p></p><pre><code>import torch2trt model_trt = torch2trt(model, [data])</code></pre><p><strong>Control Software</strong></p><p></p><pre><code>from jetbot import Robot import time robot = Robot() # Advanced movement with acceleration def smooth_move(speed=0.5, duration=1.0): robot.left_motor.value = speed robot.right_motor.value = speed time.sleep(duration) robot.stop() # Object-aware movement def intelligent_move(obstacle_distance): if obstacle_distance &gt; 20: # cm robot.forward(0.4) else: robot.left(0.3)</code></pre><h2><strong>Operation Guide</strong></h2><ol><li><p><strong>Power On</strong>:</p><ul><li><p>Switch battery to ON position</p></li><li><p>Wait for status LED illumination</p></li></ul></li><li><p><strong>Connecting</strong>:</p><ul><li><p>Access via browser at <code>http://jetbot-ip:8888</code></p></li><li><p>Password: <code>jetbot</code></p></li></ul></li><li><p><strong>Autonomous Mode</strong>:</p><ul><li><p>Run Jupyter notebook for:</p></li><li><p>Live object detection</p></li><li><p>Collision-free navigation</p></li><li><p>Road following</p></li></ul></li></ol><p><strong>Advanced Features</strong></p><ul><li><p><strong>Real-time Object Detection</strong> using SSD-MobileNet</p></li><li><p><strong>Gesture Control</strong> using MediaPipe models</p></li><li><p><strong>ROS Integration</strong> (Melodic/Noetic) for SLAM</p></li><li><p><strong>Web-based Remote Control</strong> with video streaming</p></li></ul><p><strong>Performance Optimization</strong></p><ul><li><p>Set Jetson to 10W mode:</p></li></ul><pre><code>sudo nvpmodel -m 0</code></pre><ul><li><p>Enable GPU-accelerated video decoding</p></li><li><p>Use mixed precision quantization</p></li><li><p>Implement model pruning with TorchPruner</p></li></ul><h2><strong>Troubleshooting</strong></h2><ul><li><p><strong>Camera Not Detected</strong>:</p><pre><code>sudo systemctl restart nvargus-daemon</code></pre></li><li><p><strong>Motor Stuttering</strong>:</p><ul><li><p>Check battery voltage (&gt;6.5V)</p></li><li><p>Verify PWM frequency settings</p></li></ul></li><li><p><strong>High Latency</strong>:</p><pre><code>camera = Camera.instance( fps=15 ) # Reduce frame rate</code></pre></li></ul><p><strong>Future Enhancements</strong></p><ul><li><p>Multi-modal fusion (camera + LiDAR)</p></li><li><p>ROS 2 Humble integration</p></li><li><p>Federated learning capabilities</p></li><li><p>5G connectivity for edge-cloud hybrid processing</p></li></ul><p><strong>Additional Resources from Official Guide</strong></p><ul><li><p><a target="_blank" rel="noopener noreferrer nofollow" class="text-blue-600 underline hover:text-blue-800" href="https://jetbot.org/master/">JetBot Assembly Guide</a></p></li><li><p><a target="_blank" rel="noreferrer" class="text-blue-600 underline hover:text-blue-800" href="https://jetbot.org/master/examples/collision_avoidance.html">Collision Avoidance Tutorial</a></p></li><li><p><a target="_blank" rel="noreferrer" class="text-blue-600 underline hover:text-blue-800" href="https://github.com/dusty-nv/jetbot_ros">ROS Integration Docs</a></p></li></ul>

Articles

NVIDIA Launches Isaac GR00T N1

NVIDIA Launches Isaac GR00T N1

NVIDIA’s Isaac GR00T N1 is a groundbreaking advancement in humanoid robotics, highlighting the shift towards open foundation models.

4 min readby Ben
Gemini Robotics: Google DeepMind's Breakthrough AI Model

Gemini Robotics: Google DeepMind's Breakthrough AI Model

Google DeepMind has unveiled Gemini Robotics, a revolutionary AI model that integrates language understanding into robotic functions and empowering machines.

4 min readby Ben
Edge Hackers

Join our community of makers, builders, and innovators exploring the cutting edge of technology.

Subscribe to our newsletter

The latest news, articles, and resources, sent to your inbox weekly.

© 2025 Edge Hackers. All rights reserved.