Robotics & Control Systems
Build intelligent machines with integrated hardware/software.
3 items in this topic
Projects
JetBot: Low-Cost Open-Source 2-Wheel Robot by NVIDIA
<p>A comprehensive guide for building and programming your NVIDIA Jetson-powered robot.</p><h2>Project Overview</h2><p><br>This project uses the NVIDIA Jetson platform to create an intelligent robot capable of autonomous navigation, object detection, and collision avoidance. It combines edge AI processing with robotics hardware for implementing AI-powered robotics applications at the edge.</p><h2>Hardware Components</h2><p></p><ul><li><p><strong>Computing Platform</strong>: NVIDIA Jetson Nano 4GB/2GB (Developer Kit Version)</p></li><li><p><strong>Chassis</strong>: Waveshare JetBot AI Kit chassis with 3D-printed components</p></li><li><p><strong>Motors</strong>: 2x TT Gear Motors with 6:1 gear ratio</p></li><li><p><strong>Power System</strong>:</p><ul><li><p>18650 Lithium Battery Pack (7.4V)</p></li><li><p>Waveshare Motor Driver Hat (4tronix)</p></li></ul></li><li><p><strong>Sensors</strong>:</p><ul><li><p>Camera: Raspberry Pi V2 Camera (8MP) or IMX219-77 camera module</p></li><li><p>Distance sensors: VL53L0X Time-of-Flight sensor</p></li><li><p>IMU: Optional MPU9250 9-DOF sensor</p></li></ul></li><li><p><strong>Additional Components</strong>:</p><ul><li><p>WS2812 RGB LED array</p></li><li><p>OLED display (optional)</p></li></ul></li></ul><h2>Assembly Instructions</h2><p></p><p><strong>Step 1: Jetson Setup</strong></p><ol><li><p>Flash JetPack 4.6+ to microSD card using NVIDIA SDK Manager</p></li><li><p>Complete initial Ubuntu configuration</p></li><li><p>Install JetBot software:</p><p></p></li></ol><pre><code>git clone https://github.com/NVIDIA-AI-IOT/jetbot cd jetbot sudo python3 setup.py install</code></pre><p><strong>Step 2: Hardware Assembly</strong></p><ol><li><p>Mount Jetson Nano to chassis baseplate</p></li><li><p>Connect motors to motor controller using PH2.0 connectors</p></li><li><p>Install camera module using CSI-2 ribbon cable</p></li><li><p>Connect battery to power distribution board</p></li></ol><p><strong>Step 3: Software Configuration</strong></p><ol><li><p>Configure camera interface:</p></li></ol><pre><code>from jetbot import Camera camera = Camera.instance(width=300, height=300)</code></pre><ol start="2"><li><p>Initialize motor controller:</p></li></ol><pre><code>from jetbot import Robot robot = Robot()</code></pre><h2><strong>AI Model Implementation</strong></h2><p><strong>Used Models</strong></p><ul><li><p>Collision avoidance: ResNet18 trained on synthetic dataset</p></li><li><p>Road following: Dronet-style CNN with regression output</p></li></ul><p><strong>Training Process</strong></p><ol><li><p>Collect dataset using Jupyter notebook interface</p></li><li><p>Transfer learning using PyTorch</p></li><li><p>Training workflow:</p><p></p></li></ol><pre><code>model = models.resnet18(pretrained=True) model.fc = nn.Linear(512, 2)</code></pre><p><strong>Deployment</strong></p><ol><li><p>Convert model to TensorRT format</p></li><li><p>Optimize for Jetson using:</p></li></ol><p></p><pre><code>import torch2trt model_trt = torch2trt(model, [data])</code></pre><p><strong>Control Software</strong></p><p></p><pre><code>from jetbot import Robot import time robot = Robot() # Advanced movement with acceleration def smooth_move(speed=0.5, duration=1.0): robot.left_motor.value = speed robot.right_motor.value = speed time.sleep(duration) robot.stop() # Object-aware movement def intelligent_move(obstacle_distance): if obstacle_distance > 20: # cm robot.forward(0.4) else: robot.left(0.3)</code></pre><h2><strong>Operation Guide</strong></h2><ol><li><p><strong>Power On</strong>:</p><ul><li><p>Switch battery to ON position</p></li><li><p>Wait for status LED illumination</p></li></ul></li><li><p><strong>Connecting</strong>:</p><ul><li><p>Access via browser at <code>http://jetbot-ip:8888</code></p></li><li><p>Password: <code>jetbot</code></p></li></ul></li><li><p><strong>Autonomous Mode</strong>:</p><ul><li><p>Run Jupyter notebook for:</p></li><li><p>Live object detection</p></li><li><p>Collision-free navigation</p></li><li><p>Road following</p></li></ul></li></ol><p><strong>Advanced Features</strong></p><ul><li><p><strong>Real-time Object Detection</strong> using SSD-MobileNet</p></li><li><p><strong>Gesture Control</strong> using MediaPipe models</p></li><li><p><strong>ROS Integration</strong> (Melodic/Noetic) for SLAM</p></li><li><p><strong>Web-based Remote Control</strong> with video streaming</p></li></ul><p><strong>Performance Optimization</strong></p><ul><li><p>Set Jetson to 10W mode:</p></li></ul><pre><code>sudo nvpmodel -m 0</code></pre><ul><li><p>Enable GPU-accelerated video decoding</p></li><li><p>Use mixed precision quantization</p></li><li><p>Implement model pruning with TorchPruner</p></li></ul><h2><strong>Troubleshooting</strong></h2><ul><li><p><strong>Camera Not Detected</strong>:</p><pre><code>sudo systemctl restart nvargus-daemon</code></pre></li><li><p><strong>Motor Stuttering</strong>:</p><ul><li><p>Check battery voltage (>6.5V)</p></li><li><p>Verify PWM frequency settings</p></li></ul></li><li><p><strong>High Latency</strong>:</p><pre><code>camera = Camera.instance( fps=15 ) # Reduce frame rate</code></pre></li></ul><p><strong>Future Enhancements</strong></p><ul><li><p>Multi-modal fusion (camera + LiDAR)</p></li><li><p>ROS 2 Humble integration</p></li><li><p>Federated learning capabilities</p></li><li><p>5G connectivity for edge-cloud hybrid processing</p></li></ul><p><strong>Additional Resources from Official Guide</strong></p><ul><li><p><a target="_blank" rel="noopener noreferrer nofollow" class="text-blue-600 underline hover:text-blue-800" href="https://jetbot.org/master/">JetBot Assembly Guide</a></p></li><li><p><a target="_blank" rel="noreferrer" class="text-blue-600 underline hover:text-blue-800" href="https://jetbot.org/master/examples/collision_avoidance.html">Collision Avoidance Tutorial</a></p></li><li><p><a target="_blank" rel="noreferrer" class="text-blue-600 underline hover:text-blue-800" href="https://github.com/dusty-nv/jetbot_ros">ROS Integration Docs</a></p></li></ul>
Articles

NVIDIA Launches Isaac GR00T N1
NVIDIA’s Isaac GR00T N1 is a groundbreaking advancement in humanoid robotics, highlighting the shift towards open foundation models.

Gemini Robotics: Google DeepMind's Breakthrough AI Model
Google DeepMind has unveiled Gemini Robotics, a revolutionary AI model that integrates language understanding into robotic functions and empowering machines.
Related Topics
ROS2
ROS2 frameworks for distributed robotics systems and middleware.
Open-Source Robotics
Open-source robotics projects and collaborative development platforms.
AI Robotics
AI-powered robotics solutions for autonomous decision-making.
Mission Dispatch & Fleet Management
Mission control systems for multi-robot coordination and logistics.
Motion Planning & Control
Motion planning algorithms and control theory implementations.
Robotics Simulation & Digital Twins
Digital twin platforms and simulation tools for robotic validation.
Swarm Robotics
Swarm robotics coordination frameworks.
Embedded Control Systems
Embedded control systems for real-time operation.
Robotic Grippers & End Effectors
Robotic end effectors for specialized tasks.
Robot Operating Interfaces
Human-robot interface (HRI) systems.
Robotic Vision Systems
Robotic vision systems for guidance.
Collaborative Robotics
Collaborative robot (cobot) solutions.
Robot Localization
Robot localization algorithms.
Edge Robotics Security
Security frameworks for robotic systems.